..n,然后将第n位的数(0-7)乘以8的-n次方,然后相加即可得到小数位的十进制数(按权相加法)。
3.八进制(Octal)——>十六进制(Hex)
例子1:将八进制数(751)8转换成十六进制数。
(751)8=(111101001)2=(000111101001)2=(1E9)16=(1E9)16
例子2:将八进制数(0.16)8转换成十六进制数。
(0.16)8=(0.00111)2=(0.00111000)2=(0.38)16
诀窍:八进制直接转换成十六进制比较费力,因此,最好先将八进制转换成二进制,然后再转换成十六进制。
(751)8=(111101001)2=(489)10=(1E9)16
(0.16)8=(0.00111)2=(0.21875)10=(0.38)16
五、十进制转化成其他进制
1.十进制(Decimal)——>二进制(Binary)
例子1:将十进制数(93)10转换成二进制数。
93/2=46……….1
46/2=23……….0
23/2=11……….1
11/2=5…………1
5/2=2…………...1
2/2=1……………0
(93)10=(1011101)2
例子2:将十进制数(0.3125)10转换成二进制数。
0.3125x2=0.625
0.625x2=1.25
0.25x2=0.5
0.5x2=1.0
(0.3125)10=(0.0101)2
诀窍:以小数点为界,整数部分除以2,然后取每次得到的商和余数,用商继续和2相除,直到商小于2。然后把第一次得到的余数作为二进制的个位,第二次得到的余数作为二进制的十位,依次类推,最后一次得到的小于2的商作为二进制的最高位,这样由商+余数组成的数字就是转换后二进制的值(整数部分用除2取余法);小数部分则先乘2,然后获得运算结果的整数部分,将结果中的小数部分再次乘2,直到小数部分为零。然后把第一次得到的整数部分作为二进制小数的最高位,后续的整数部分依次作为低位,这样由各整数部分组成的数字就是转化后二进制小数的值(小数部分用乘2取整法)。需要说明的是,有些十进制小数无法准确的用二进制进行表达,所以转换时符合一定的精度即可,这也是为什么计算机的浮点数运算不准确的原因。
2.十进制(Decimal)——>八进制(Octal)
例子1:将十进制数(93)10转换成八进制数。
93/8=11………….5
11/8=1……………3
(93)10=(135)8
例子2:将十进制数(0.3125)10转换成八进制数。
0.3125x8=2.5
0.5x8=4.0
(0.3125)10=(0.24)8
诀窍:方法同十进制转化成二进制。以小数点为界,整数部分除以8,然后取每次得到的商和余数,用商继续和8相除,直到商小于8。然后把第一次得到的余数作为八进制的个位,第二次得到的余数作为八进制的十位,依次类推,最后一次得到的小于8的商作为八进制的最高位,这样由商+余数组成的数字就是转换后八进制的值(整数部分用除8取余法);小数部分则先乘8,然后获得运算结果的整数部分,将结果中的小数部分再次乘8,直到小数部分为零。然后把第一次得到的整数部分作为八进制小数的最高位,后续的整数部分依次作为低位,这样由各整数部分组成的数字就是转化后八进制小数的值(小数部分用乘8取整法)。
3.十进制(Decimal)——>十六进制(Hex)
例子1:将十进制数(93)10转换成十六进制数。
93/16=5……..13(D)
(93)10=(5D)16
例子2:将十进制数(0.3125)10转换成十六进制数。
0.3125x16=5.0
(0.3125)10=(0.5)16
诀窍:方法同十进制转化成二进制。以小数点为界,整数部分除以16,然后取每次得到的商和余数,用商继续和16相除,直到商小于16。然后把第一次得到的余数作为十六进制的个位,第二次得到的余数作为十六进制的十位,依次类推,最后一次得到的小于16的商作为十六进制的最高位,这样由商+余数组成的数字就是转换后十六进制的值(整数部分用除16取余法);小数部分则先乘16,然后获得运算结果的整数部分,将结果中的小数部分再次乘16,直到小数部分为零。